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The mechanics of the quasi-steady breaking wave created above a submerged 
hydrofoil, first studied experimentally by Duncan (1981), is elucidated here. It is an 
example of a flow wherein the resistance of the body manifests itself in a detached 
separation eddy located away from the body (i.e. on the free surface). As we show, the 
conditions for inception of separation and the prediction of the breaking configuration 
follow from simple considerations, without extensive calculation. 

The physical model of the breaker, based on observations, consists of an essentially 
stagnant eddy riding on the forward face of the leading wave in the wave train behind 
the hydrofoil. This eddy is sustained by turbulent stresses acting in the shear zone 
separating the eddy and the underlying flow. These stresses result in a trailing turbulent 
wake just beneath the water surface. The breaker eddy contains air entrained at 
breaking, and the degree of aeration is a parameter of the problem. 

The eddy-breaker model is quantified utilizing independent measurements of 
turbulent shear stress in shear zones. It is then shown that the hydrostatic pressure 
acting on the dividing streamline underneath the eddy creates a trailing wave which 
largely cancels the trailing wave that would exist in the absence of breaking. The ‘wave’ 
resistance of the hydrofoil then manifests itself in the momentum flux of the residual 
trailing wave, plus the momentum flux in the breaker wake, i.e. the breaker resistance. 

For a fixed hydrofoil speed the total momentum flux, or resistance, in the presence 
of breaking is shown to have a minimum corresponding to a particular value of the 
trailing-wave steepness. It is thus concluded that the wave resistance must exceed this 
value for breaking to ensue. For hydrofoil resistance in excess of this minimum, both 
a weak and strong breaker would seem to exist. It is shown, however, that the weak 
breaker is unstable. It is also shown that a maximum steady breaking resistance exists, 
limited by the size of the breaker and dependent on the extent of its aeration. 

Good quantitative comparisons between theory and experiments are shown. 

1. Introduction 
Under natural conditions, breaking waves are ubiquitous in the deep ocean, in the 

surf zone, and in the flow about ships, and they play a great role both in ocean 
physics and engineering. Nevertheless, our knowledge of breaking phenomena is 
limited. In particular, we lack basic quantitative understanding of the mechanism 
responsible for breaking, and of the post-breaking phase. This lack is to a great extent 
due to the difficulties involved in the measurement of transient phenomena, especially 
in the field. 

A special opportunity for fundamental studies of breaking waves is presented in the 
case of a ‘steady’ spilling breaker, and this was taken advantage of by Duncan (1981, 
1983) who made systematic measurements of phenomena attending the breaking of 

t Present address : Mission Interministerielle de 1’Effet de Serre, Ministere de l’Environnement, 20, 
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Breaker b 

FIGURE 1. Schematic of trough, followed by a breaker sitting on the forward face and followed by a 
turbulent wake created along the dividing streamline a-b. The hydrofoil is in steady motion to the 
left. 

waves created by towing a submerged hydrofoil in the laboratory, see figure 1. His 
experiments provided for the first time not only careful qualitative observations but 
also a set of measurements relating breaker and wave dimensions. These data raised 
questions and provide an opportunity for comparison with theory; they stimulated us 
to carry out the work reported here, which was largely completed in the theses of 
Cointe (1987, 1989); brief reports on the work in progress were reported in Tulin & 
Cointe (1986, 1987). A detailed account of the research is presented here for wider 
dissemination. Also, we propose a model for steady spilling breakers. 

Duncan’s observations give rise to a variety of questions. Some of those which 
have most intrigued us are: How is the onset of breaking determined in this case? Why 
does a fully formed breaker appear at incipient breaking? What is the relation between 
the hydrofoil resistance, the breaker, and the amplitude of the following waves? How 
does the breaker suppress the following wave? 

The answers to these questions require the detailing and quantification of 
appropriate physical models, which began with the work of Banner & Phillips (1974). 
Here, after a brief review of others ($2), we describe the physical and quantitative 
model we have utilized (93). The breaker is modelled explicitly as a low-energy, 
essentially stagnant, recirculating eddy riding on the face of the breaking wave and 
kept in place by the turbulent friction between the underlying flow and the eddy; the 
region about the boundary between this eddy and the underlying flow is modelled as 
a mixing zone. The breaker is trailed by a viscous momentum wake corresponding to 
the frictional force acting on the breaker mass. The breaker bears in this model a strong 
similarity to attached separated regions behind bluff bodies, as modelled by Tulin & 
Hsu (1980). The requirements of force equilibrium and the assumption of constant 
total head on the dividing streamline lead to the determination of the breaker height 
in terms of the crest height of the underlying wave. The resistance associated with the 
breaking wave is determined by two independent methods, with agreement: by a 
momentum balance involving a change of state between an unbroken upstream wave 
and the broken wave, and by direct potential wave calculation. The effect of the trailing 
wake is considered theoretically and shown to be small but noticeable. Some aspects 
of our modelling have been inspired by previous work, particularly Banner & Phillips 
(1974) and Duncan (1981), as discussed subsequently. However, most features of the 
quantification of the model and the fundamental results which follow, are believed to 
be wholly new. 
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It is shown that the existence of a steady broken wave arises from the fact that it 
allows the resistance acting on the foil to be balanced by the resistance of the breaker 
plus that of the following waves. These results tend to explain the appearance of a 
threshold steepness for breaking in the experiments which is not related to Stokes’ 
limiting wave. For wave steepness beyond threshold, but below Stokes’ limiting wave 
steepness, two breaking solutions are, in general, found to exist : a strong solution (with 
a large breaker) and a weak solution. Only the strong solution is found to be stable. 
The results are shown to be in very good qualitative and quantitative agreement with 
the laboratory experiments of Duncan. 

It should be stressed that fundamental differences exist between transient spilling 
breakers at sea, and the steady spilling breakers as discussed here. Whereas the 
modelling developed here may be modified to deal with quasi-steady breakers coming 
onshore under certain circumstances, the transient behaviour of spilling breakers at sea 
requires the application of non-steady breaker theory. 

2. Previous work 
Spilling breakers as they occur at sea are transient, with effective lifetimes as short 

as a quarter of a wave period; an unsteady model has been proposed by Longuet- 
Higgins & Turner (1974), in which the breaker has been modelled as a turbulent gravity 
current riding down the forward face of the wave; much more remains to be done. The 
evidence is also mounting that the inception of breaking at sea is a consequence of non- 
steady wave interaction and cannot be related directly to the existence of a limiting 
wave, see Tulin & Li (1992); the explication of verified mechanisms awaits the future. 

Somewhat more is known about ‘steady’ spilling breakers. They take various form 
in the flow around most ships, behind hydrofoils (mainly in the laboratory), in bores 
(or hydraulic jumps) and in quasi-steady form in the continually breaking waves on 
very shallow beaches. Since they can readily be produced in towing tanks and/or water 
channels, they provide an opportunity for detailed experimental study of breaking. They 
have therefore become of scientific interest despite their obvious dissimilarity to ocean 
transient breakers. 

Spilling breakers are by their nature dissipative and at the scales which occur in 
nature they are turbulent in part; in addition, they are observed commonly to oscillate 
with a period about 4 times greater than that of the wave. They are steady, therefore, 
only in some mean sense. 

The initial study of steady spilling breakers was made by Banner & Phillips (1974) 
using experiments performed by Duncan in a small flume. They gave the first 
qualitative description: a rolling eddy at the wave face anchored by a stagnation point 
at the wave crest; a turbulent wake extending behind the breaking region. Their 
interest was in fact in the inception of small spilling breakers, which they related to the 
pre-existence of a stagnation point on the wave surface. Their interest in the breaker 
itself was incidental and they did not therefore pursue quantitative or detailed 
discussion of the post-formation breaker. This work had been preceded slightly by a 
theoretical model of the viscous flow at the toe of the breaker, which was assumed to 
include a stagnation point (Longuet-Higgins 1973). This assumption had not been 
taken up by Banner & Phillips (1974), who found the contrary, and the origin of a 
mixing layer at the toe was later included in a description suggested by Peregrine & 
Svendsen (1978). This mixing layer plays a particular explicit role in the quantitative 
model of the present paper. 

The Banner & Phillips (1974) initiative was continued in doctoral work by Duncan 
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(198 l), who provided the first systemic measurements of the post-formation breaker in 
beautiful experiments in a small towing tank utilizing a two-dimensional submerged 
hydrofoil. In these experiments, conducted over a range of speeds, depths, and 
hydrofoil lifts, the inception of breaking was observed, the post-breaking dimensions 
of the breaker measured, as well as the wave face slope, the length and amplitudes of 
the breaking and following waves. He also surveyed the turbulent wake behind the 
breaking region and thereby determined the resistance associated with the breaker 
(Duncan 1983). The Duncan study was primarily experimental; aside from a wake 
momentum analysis to be used for the determination of breaker drag from experimental 
data, his analyses of the breaking region and of the process itself were limited to the 
calculation of the horizontal and vertical momentum balances for the breaking region 
lying above the dividing streamline, assuming a flat wave face. He thus produced the 
important result that the weight of the water in the breaker is supported by friction 
acting on the breaker face; he was thereby able to relate the breaker weight to the wake 
momentum deficit, and thus estimate the density of the aerated fluid in the breaker. He 
did not otherwise model the breaking region, or attempt to estimate the height of the 
breaking wave in relation to the breaker dimensions. His experimental results were 
startling in a number of respects and notably: (i) upon the inception of breaking, a fully 
formed breaker appeared; (ii) a strong repression of the following waves occurs. The 
current research was undertaken in response to these observations, which were not 
dealt with by Duncan himself. 

In Duncan’s picture of the flow, a large part of pressure drag on the hydrofoil, which 
is due to the presence of the free surface, appears as momentum loss in the turbulent 
surface wake. The shear stresses necessary to cause these momentum losses are created 
along the boundary between the overlying eddy and the flow beneath. It may be 
relevant to point out that this remarkable conversion of pressure drag to momentum 
wake also occurs in the case of the fully separated stable wake regions behind bluff 
bodies, where the shear stress acting on the mixing zone between the contained eddies 
behind the model and the outer flow accomplishes the conversion; the theory was given 
by Tulin & Hsu (1980). 

Other and less detailed measurements of breakers behind hydrofoils were made by 
Battjes & Sakai (1981) and Mori (1986). The former was primarily concerned with 
measurements in the wake trailing the breaker, and the latter in the inception of 
breaking due to unstable small disturbances. 

Regular surging oscillations of the ‘ steady ’ breaker were observed by Duncan (1 98 1) 
at a period of 4.4 times the wave period and ascribed to resonant interaction with a 
specific component of the starting wave. Further observations of these oscillations were 
conducted by Banner (1987) in a water channel, who modelled these oscillations as a 
balance between the surging accelerations of the breaker mass and the resulting 
perturbations in shear stress along the boundary. 

The present work was begun in 1985 and was largely completed in the theses of 
Cointe (1987, 1989). 

3. Steady spilling breakers 
3.1. The model of the breaker 

Following the observations of Duncan, when the flow is steady, the breaker is regarded 
as a closed recirculating region of aerated water in contact with the underlying wave 
from the crest at point b, downward over the wave face to its leading edge or toe at 
point a, see figure 2. The flow is of course turbulent and exchanges take place from 



A theory of steady breakers 

Breaker eddy 

5 

b 

FIGURE 2. Physical model of a spilling breaker. Top: the weak eddy within the breaker, sitting on the 
dividing streamline a-b and held in place against gravity by the shear stresses 7 ;  bottom: the region 
of mixing between the energetic flow below a-b, and the weak eddy above a-b, showing a 
discontinuity in flow speed at the eddy toe. 

instant to instant between the breaker and the underlying wave, resulting in shear 
stresses. But we hereafter refer to the mean steady flow (i.e. time averaged) observed 
in a frame of reference linked with the hydrofoil. 

3.1.1. Mixing-layer model 
At the toe (a)  the underlying flow first comes into contact with the overlying eddy. 

We prove subsequently, equation (lo), that the dynamic pressures, and therefore the 
motions within the eddy, are on average at least an order of magnitude less than the 
hydrostatic pressures; therefore the eddy can be regarded as essentially stagnant. 

The flow when a uniform stream in the lower half-space suddenly encounters 
stagnant fluid above was modelled in the turbulent regime by Tollmien (1926) utilizing 
a mixing-length model for the estimation of the shear stresses. In this model, a mixing 
region originates at the point (a) and extends in a region downstream bounded by 
straight lines, see figure 3. The streamline bounding the flow in the lower half-plane 
continues through a ;  beyond a this streamline divides the upper and lower mixing 
regions. In the upper region the stagnant flow becomes retarded. The maximum shear 
stress occurs on the dividing streamline and is constant along it. It rises through a 
discontinuity at the point a. As a consequence the total head and flow speed at point 
a are discontinuous and are substantially reduced upon entering the mixing zone; in 
Tollmien’s model the speed is reduced by about half. The static pressure is essentially 
constant in the mixing region while the total head varies on a vertical path from its 
maximum value in the moving fluid to its minimum value in the stagnant region. It is 
a noteworthy feature of the singular flow at a in the Tollmien model that the finite shear 
stresses acting there result in a discontinuous streamwise change in the total head. The 
reason for this lies in the singular horizontal gradient in the shear stress at a. Beyond 
a on the dividing streamline, the transverse gradient in shear stress is zero (i.e. the shear 
stress is a maximum there), and the total head is therefore preserved constant. 

The variation of total head on a dividing streamline in more complex mixing flows 
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Mixing flow 
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FIGURE 3. The classical turbulent-mixing-layer model, according to Tollmien (1926), where /3 x 0.5, 
suggesting a discontinuity in kinetic head at the toe a in the spilling breaker. 
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FIGURE 4. Definitions related to the steady breaker. 

than the simple flow of Tollmien will again depend largely on the shear stress gradient 
acting there, as well as the curvature of the streamline. We resort to a past experiment, 
Arie & Rouse (1956), wherein a two-dimensional outer flow mixes with a stabilized, 
essentially stagnant, wake behind a vertical flat plate. In figure 8(b) of their paper, 
vertical profiles of total head coefficient (dark solid lines) are shown at four streamwise 
stations over the length of the wake. The total head, evaluated on the dividing 
streamline, is close to constant over the entire wake, with an average value of 
approximately zero. This result, obtained by detailed surveys of pressure and velocity 
throughout the wake, is consistent with their measurements of vertical Reynolds stress 
profiles, their figure S(c), which are shown to peak on the dividing streamline at the first 
two stations, and to peak slightly below the dividing streamline at the third station. 
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FIGURE 5. Breaker height us. following wave height; present theory fitted to 
Duncan's (1981) data. 

In view of the uniformity of total head on the dividing streamline in the mixing type 
of wake flow studied by Arie & Rouse we adopt the assumption of constant total head 
in the steady breaker flow. 

We leave the jump in velocity at the toe to be determined experimentally. We write 

where qo(a) is the flow velocity just upstream of a and q,(a) is the velocity along the 
dividing streamline just downstream of a. Upstream of the point a, assuming no 
viscous effects on the approaching streamline :? 

where c is the velocity of the flow far upstream and c(a) is the free-surface elevation at 
point a, see figure 4. Downstream of a, the constancy of total head between a and b 
results in 

where [(b) and q,(b) are the elevation and the velocity at point b. Equations (l), (2) and 

q,(a) = P40(a), (1) 

qXa) + 2 gC(4 = c2, (2) 

( 3 )  4%) + 2 gtl(a> = 4 m  + 2 gab) ,  

where the total height of the breaker, h* = [(b) - c(a), has been introduced. 
This result (4) is entirely consistent with Duncan's (1 98 1) experiments, which also 

show that there exists a linear relationship between the height of the breaker and the 
height of the following waves, figure 5. When (4) is fitted to these data (assuming 
2c(b) = af ,  i.e. the elevation of b relative to the mean water level is equal to half the 

f The choice of Bernoulli's constant determines the position of the x-axis. In deep water, and if 
the wake downstream of the breaker is neglected, this x-axis coincides with the mean level (Lamb 
1932). 
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height of the following waves; this assumption is confirmed later by potential flow 
computations as shown in figure lo), the slope of this relationship determines the value 
of pz (about 0.5) and its position requires that q,(b) = 0 ;  i.e. that the top of the breaker 
is located at the crest and is a stagnation point. This both confirms the observations 
of Duncan and earlier of Banner & Phillips (1974), as well as the analysis made here. 

The result, figure 5 ,  extends Duncan's data, which involve following waves of relatively 
small amplitude, into the region of large-amplitude waves. Then the relationship 
between (4) and ( 5 )  can be modified by determining 25(b)/af from finite-amplitude 
(Stokes) wave theory still assuming that the elevation of b is equal to the elevation of 
the following crests; when this is done using numerical computations from Longuet- 
Higgins (1975), the dotted curve in figure 5 results. 

We should emphasize that this relationship between breaker height and following 
wave amplitude, (9, is new and permits later analyses which lead to predictions 
regarding the inception of breaking. It is remarkable that this relationship follows so 
simply upon assumption of the constancy of total head on the dividing streamline, 
suggested by the mixing-layer model and the wake flow of Arie & Rouse (1956). 

We may note that the largest breaker height corresponds to the case where the 
following wave amplitude disappears (af = O), in which case gh*/c2 = i. 
3.1.2. Force equilibria on the steady breaker 

Important results can be obtained from force equilibria at the breaker-eddy, as 
shown by Duncan (1981), who found in this way that the weight of the breaker is 
supported by the vertical component of shear stresses acting on the dividing streamline. 
Here we extend his result by considering the separate contributions of hydrostatic and 
dynamic pressures to the force equilibria. The dynamic pressures, pdylz ,  result from the 
eddying motion, and this separation allows us to show that this motion is very weak. 
As a result we are justified in subsequently predicting the breaker shape based on the 
balance between hydrostatic pressures and turbulent shear stresses acting on the 
dividing streamline. 

The vertical equilibrium is given by (see figure 4 for nomenclature): 

gdV- pnyda+ m,dc  = 0, 1:s:" 1: 1: 
and since the hydrostatic pressures balance gravity forces, (6) can be used to show that 

where p d y n  is the dynamic pressure due to the circulatory motion within the eddy. 
Horizontal equilibrium leads to 

which can also be written, introducing the hydrostatic pressure and assuming the 
density to be constant within the breaker, 
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A (cm2) 4.6 5.4 9.5 12.4 6.0 20.5 12.6 20.3 16.4 28.9 31.7 39.3 
0 ( k . 1  13.3 11.6 10.0 10.9 14.7 11.0 13.1 13.1 13.9 13.0 13.8 12.7 
h* (cm) 1.50 1.43 1.68 2.12 1.85 2.77 2.45 3.26 2.95 3.60 3.98 4.51 
A ~ i n ~ 0 / 4 h * ~  0.027 0.027 0.025 0.025 0.028 0.024 0.027 0.025 0.027 0.028 0.028 0.023 

TABLE 1. Results from Duncan’s (1981) experiments 

An estimate of the relative importance of the dynamic pressure follows by assuming 
that the dividing streamline a-b is flat, constant 8. Then, eliminating 7 from (7) and (9), 
we find 

Duncan (1981, 1983) measured values of 8 between 10” and 18” so that the dynamic 
pressures within the eddy are only approximately 10 YO of the hydrostatic pressures in 
magnitude, or less. This result suggests that the circulation within the eddy is negligibly 
weak. 

Similarly, the dynamic pressure can be eliminated from (7) and (9), yielding after 
integration 

(1 1) ;id = J:7dx = ApegsinBcos8, 

where d is the horizontal length of the breaker and A its area (see figure 4). This result 
corresponds to Duncan (198 1, equation (7)). 

Equations (2), ( 5 ) ,  and (1 1) allow us to go beyond Duncan and to estimate the mean 
friction coefficient along the dividing streamline in terms of the density of the aerated 
breaker, pe/p ,  which has not been measured : 

The values measured by Duncan (198 1) for the geometry of the breaker, see table 1, 
indicate that A sin2 8/4h*’ is constant, approximately equal to 0.026. The friction 
coefficient defined with qO(a) as velocity scale is therefore found to be proportional to 
the density ratio p e / p :  

cf z 0.026 @,/p). (13) 
This result, together with estimates of the density ratio that will be given later, yield a 
friction coefficient of order 0.01, a value close to that found experimentally in the 
mixing zone behind a bluff body (vertical flat plate) by Arie & Rouse (1956).t This is, 
again, an important quantitative confirmation of the mixing-layer model. 

3.1.3. Hydrostatic theory of the breaker 
The conclusion that the dynamic pressure can be neglected in comparison with the 

hydrostatic pressure leads to a very simple theory in which the shape of the breaker is 
determined by the balance between horizontal forces due to pressure and turbulent 
shear stresses acting on the side and bottom boundary of a vertical slice of the eddy. 
As a result, the height of the breaker above the dividing streamline is given by 

dh 
pegh- dx = 7-peghtanB 

t From their figure 8(c), and correcting a mistake in their nomenclature, (u’d)1’2/q, should be 
u’v’/qZ,, a value of cr = 0.0127 is obtained. 
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or 

Given that ~ ( a )  is non-zero, as in the mixing layer, then in the immediate vicinity of 
(a),  the front shape of the hydrostatic eddy is parabolic, rising rapidly as the square 
root of the horizontal distance from (a). Equation (1.5) shows moreover that the 
breaker height, h, has to remain smaller than - Q as long as the shear stress remains 
positive. As a result, the breaker has to be inscribed in a right-angled triangle and the 
shape factor h*d/2A should always be greater than 1 (if 6' is constant). Duncan's 
experiments yield values of this shape factor close to 1 and seem to show a quasi- 
triangular shape for the breaker. This triangular shape would correspond to the case 
where the shear stress is concentrated at the front of the breaker, with 

pe tan 19 
Tdx=ipegh*2 or c ---. 

f - p  8 

The assumption that the breaker is flat-topped seems however very strong and is 
disputed by the observations of Banner (1987). It will therefore not be made in what 
follows. Actually, as will become apparent in the following analysis, an exact 
knowledge of the breaker shape is not necessary for the present theory; the important 
quantity is the integrated shear (or the value of cf). 

3.2. The eflect of the breaker on the following waves 

3.2.1. General 
The breaker is riding on the forward face of the breaking wave and is kept in place 

by shear stresses acting at the dividing streamline. This determines the shape of the 
breaker but, reciprocally, the breaker causes a modification of the wave, comprising a 
strong repression of the incoming wave. This was observed and measured by Duncan 
but not explained and it has been one of the major goals of this theory to explain this 
effect quantitatively . 

The breaker causes a pressure to act on the underlying wave as well as shear stresses 
to act on the free streamline (ak (b ) ,  resulting in the following wake. As shown later, 
we can neglect the effect of the shear and its wake on the following waves for our 
present purpose. The pressure due to the weight of the breaker is thus primary, and it 
causes energy to be extracted from the underlying wave through its action. This 
extraction of work causes repression of the following waves. The extracted energy is 
dissipated in the breaker turbulence. This is the overall picture. 

In the following analyses, this effect is calculated in deep water in two separate ways 
with agreement: 

(i) by explicitly calculating the counterwave due to the breaker-induced pressure and 
its subtractive effect on the advancing wave; 

(ii) by considering an unbroken incoming wave and by placing the breaker-induced 
pressure on one of the crests. The repressive effect on the following waves is then 
calculated by making a momentum balance across the region between unbroken and 
broken waves, and considering the effect of the breaker as an externally imposed force. 
In this balance, the wave momentum flux is, of course, a second-order quantity in wave 
amplitude and is known from progressive-wave theory, either linear or nonlinear. It is 
appropriate to think of this as a kind of shock analysis. 

The shock analysis can readily be made taking nonlinear wave properties into 
account and these turn out to be very important. On the other hand, the counterwave 
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R, = R, + 

Free surface of the 
underlying wave 

FIGURE 6. Control volume for the balance between inflowing wave momentum (I?,,), resistance 
due to breaker ( R J ,  and outflowing wave momentum ( R J .  

calculation is not very easy in the nonlinear regime and was not made there. Assuming 
linear waves, calculations made using both methods were in very good agreement. 
These confirm the shock analysis and at the same time prove that the wave repression 
is equivalent to the creation of an interfering counterwave by the breaker-induced 
pressures. 

What is the relation between the hydrofoil flow and shock analysis? It is simply that 
the incoming unbroken wave is the wave that the hydrofoil would have produced in the 
absence of breaking. Of course, in the case of very large hydrofoil resistance, these 
waves could not exist as their steepness would exceed that of the Stokes limiting wave. 

3.2.2. Momentum balance: shock calculation 
The Shock Relation. We wish to calculate the repressive effect of the breaker upon 

the advancing wave indirectly, by applying a momentum balance. In order to perform 
the momentum balance, we consider the control volume shown in figure 6, which 
includes the free surface of the underlying wave. Note that the control volume also 
includes the bottom (assumed to be horizontal). Results for infinite depth are obtained 
by letting the depth (and, therefore, the bottom of the control volume) go to infinity. 
We will assume that aft of the crest b the flow is established and, therefore, periodic 
in x. 

We first neglect the effect of shear and its wake. The breaker acts only on the 
breaking wave through the pressure it applies on its front face. The incoming wave 
momentum flux (which corresponds in Duncan’s experiments to the resistance of the 
foil due to wavemaking) can then be written from the horizontal momentum balance 
as 

where R,  is the resistance associated with breaking, and R f  the resistance associated 
with the following waves. 

According to linear theory, and for infinite depth, the resistance associated with the 
following waves, R,, is given by 

where a, is the crest-to-trough height of the following waves. For a small value of 
gaf/c2, Rf increases therefore as the square of a? Integral properties of period gravity 
waves of finite amplitude were provided by Longuet-Higgins (1975) for infinite depth, 
and nonlinear effects can therefore be accounted for; the corresponding values for R f  
have been tabulated (Duncan 1982; Cointe 1987) and plotted in non-dimensional form 

R, = R b + R f ,  (17) 

R f  = pga;/./16, (18) 
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FIGURE 7. The result of the momentum (shock) analysis, R, us. trailing wave height, a? Comparison 
with actual wave calculations, 0, using linear theory. Also shown are the trailing wave momentum, 
R,, and the breaking wave resistance. 

in figure 7 as a solid line. A maximum wave resistance exists, R* TZ 0.02pc4/g, for a 
steepness slightly smaller than Stokes' limiting steepness. As a consequence, the 
resistance associated with a non-breaking wave train cannot exceed R*. As a result, 
hydrofoil wave breaking may be regarded as a mechanism for absorbing large 
hydrofoil resistances. 

The resistance associated with steady breaking is 

R, = ptan8dx. J: 
If we assume a constant slope 8 (but do not neglect dynamic effects within the breaker), 
equations (9), (1 1) and (12) yield 

As a result, the breaking resistance is proportional to the square of the total height 
of the breaker, other factors held constant. We note that both the friction coefficient 
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and the slope may vary somewhat with h*. According to figure 5, h* decreases as af  
increases. As a consequence, the breaking resistance increases as the height of the 
following waves decreases. 

The total resistance can finally be written as 

where y = 8cf/tan8. The parameter y is related to the mean friction coefficient or 
alternatively, from equation (13), to the mean density ratio, y z (0.208/tan B)/(p,/p). 
Actually, in the ideal case of a concentrated shear stress (equation (16)), y is just equal 

In equation (21), the total resistance appears as the sum of both increasing and 
decreasing functions of a? As a consequence, R, can possess a minimum, R,, for af = 
afman* It also possesses a maximum, R,,,, for af = 0;  i.e. when the following wave train 
is totally suppressed. The maximum of Rf we call R* : it corresponds to the progressive 
wave of maximum momentum flux. In this formulation (21), the total resistance is a 
function of two variables: 

to PelP. 

so that a family of possible resistance relations, R,/R*, exists. From ( 5 )  (with p2 = 0.5) 
and taking into account that linear wave properties apply well for gaf/c2 < 0.4, 
equation (21) reduces to 

pc4 -16 - [ (1+2y) (q -4yq+2y] .  C 

Consequently, when a constant y is assumed, it is easy to obtain 

Incipient breaking was observed by Duncan (1983) for a value of gR/pc4 equal to 
0.0166. Duncan also measured total resistances as high as gR/pc4 equal to 0.0620 and 
observed that at this point the drag associated with the following wave train was almost 
zero. Taking these values for Rmin and R,,, leads to two different values of y :  0.2 for 
incipient breaking and 0.5 for very strong breaking. More experiments would be 
needed to get an estimate of the variation of y (that is the mean friction coefficient or 
the mean density ratio) with breaker strength. Lacking more experimental results, we 
show in figure 7 the composite curve resulting from the assumption that y varies 
linearly with the height of the breaker between these two values. 

According to this result derived from momentum balance: for R, c Rmin, no 
solution incorporating a breaking wave exists; for Rmin < R, < R*, two breaking 
solutions exist - a weak solution with a smaller breaker and larger following waves and 
a strong solution with a larger breaker and smaller following waves - concurrently with 
the non-breaking potential so1ution;t for R* < R, < R,,,, only the strong breaking 

t This is not true in the vicinity of the wave of maximum resistance where more than one non- 
breaking wave and one weak breaking wave can lead to the same value of R,. 
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solution is possible and the residual resistance associated with the following waves is 
negligible; for R,,, < R,, the present model predicts that no steady breaking solution 
(and, of course, no steady non-breaking solution) can exist. 

Assuming for now that only strong breakers can exist, these predictions strongly 
resemble Duncan’s (1981, 1983) observations which have shown that: breaking first 
occurs for a steepness less than that of the limiting wave; for a certain range of total 
resistance, breaking and non-breaking states are possible ; at the first appearance of 
breaking, a fully formed breaker appears ; thereafter, the breaker grows with increasing 
hydrofoil resistance and the height of the following waves decreases. 

Static Stability Analysis. In order to confirm that only strong breakers can exist, we 
study the static stability of the equilibrium configurations of the breaker. For that 
purpose, we compute the total horizontal force I;, acting on the breaker (which is 
exactly zero at the equilibrium point), due to a perturbation in its upstream position, a :  

I;, = (T-ptan8)dx. 1: 
Stability corresponds to a&;,/& < 0 and it can be shown that 

& = R, (a f )  - R, (equilibrium). (27) 

& is therefore a function of af only. Assuming that 

(see (5)),  it appears that the stable branches in figure 7 are those corresponding to the 
total resistance decreasing when af increases. This confirms that only strong breakers 
can exist. 

3.2.3. The wake: boundary-layer analysis 
The trailing wake behind the spilling breaker seems to behave very much like the 

turbulent wake behind a two-dimensional body, according to the measurements of 
Duncan (1981) and Battjes & Sakai (1981). We will, therefore, use here arguments 
similar to those classical boundary-layer theory along a fully submerged body. Upon 
the assumption that the wake is suitably thin, its effect may be calculated by finding the 
outer potential flow, referred to here as the pseudoflow, corresponding to the actual 
physical wave. The discussion given here will only use the results of the mathematical 
study and focus on their physical interpretation. This analysis is closely related to that 
of Longuet-Higgins (1 969) who investigated the effect of wind shear on wave 
propagation. 

The displacement and momentum thicknesses of the wake. The major effect is that the 
pseudoflow free surface is displaced downward by a distance corresponding to the 
wake displacement thickness, 6,. Von Kirman’s boundary-layer momentum equation 
applies and can be written as 

-+--(H+2)6 d&, 1 - ~ 7 

2 - P  w I 7  4,’ dcr qnaa 

where 6, is the momentum thickness of the boundary layer, qn the velocity at the free 
surface of the pseudoflow, H the shape factor of the wake and pfu the density 
of the wake. 
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For the far wake, the shear stress is equal to zero and we assume that the 
displacement and momentum thicknesses are proportional. Equation (28) yields after 
integration 

where c is the celerity of the wave and A a constant (the momentum thickness where 
qn = c). As the wake flows along the wavy free streamline of the pseudoflow, the 
pseudoflow speed fluctuates accordingly (increased in the trough and decreased at the 
crest), and so, therefore, does the displacement thickness. This modulation of the 
boundary-layer thickness is shown schematically in figure 9. 

The question arises of how to relate A and the shear applied along the dividing 
streamline below the breaker. If it is assumed that qn x c everywhere along the free 
surface of the pseudoflow aft of the leading edge of the breaker, point a, equation (28) 
yields (we assume H = 1 far downstream) 

(29) H + ~ A  4 = (c/qn) 7 

Equation (30) gives the classical relation between the wake momentum thickness and 
the integral of the shear along the boundary of the dividing streamline. Duncan (1981) 
postulated this relation. 

Combined with our estimate of the shear along the dividing streamline, estimate (30) 
of the wake momentum thickness yields a relation among several experimental 
observables : 

9 

P g A  A = AsinO-. 
PUJ C2 

This relation was first given by Duncan (1981) who measured A using a Pitot traverse 
in the following wave field and otherwise measured 8 and A (1981, 1983). A is plotted 
as a function of sin BgA/c2 in figure 8. A linear relationship appears and, according to 
(3 l), leads to an estimate of pJp, of around 0.5 (0.6 if only the data of Duncan’s first 
paper are used). As the wake can be aerated, p,/p is probably even smaller. If this 
estimate appears to be rather small compared to direct experimental observations, the 
probable range quoted by Longuet-Higgins & Turner (1974) @’/p between 0.7 and 1) 
is more relevant to the density at the dividing streamline, p,, while pe represents an 
average value of the density over the estimated surface of the breaker. 

Using (12), the wake momentum thickness can also be written as 

where y = 8cf/tanB is in the range [0.2-0.5]. 
The efect  of the wake on the wavelength of the following waves. Another effect of the 

boundary layer is that its weight acts upon the pseudoflow free surface causing a 
secondary pressure. Similarly, the curvature of the streamline of the pseudoflow 
induces an additional secondary pressure. Along the streamline of the pseudoflow, the 
pressure is therefore not constant but varies with the thickness of the boundary layer. 
If the pressure at the free surface of the real viscous flow is constant, equal to zero, the 
pressure acting along the free surface of the pseudoflow is (Cointe 1987) 
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FIGURE 8. Skin friction us. momentum thickness of the wake (experiments), 
from Duncan (1981, 1983). 

For the wake aft of the crest, point b, this additional pressure causes a modification of 
the dispersion relation. It can be shown that the wavenumber K corresponding to a 
small-amplitude wave for celerity c is (we assume H = 1) 

Combining (32) and (34), we obtain finally 

This relation is plotted in figure 9 for y equal to 0.2 and 0.5. It compares rather well 
with Duncan’s (198 1) measurements of the shortened following wavelength. This effect 
has not been otherwise explained. In particular, the steepness of the following waves 
is too small for finite-amplitude effects to explain the observations since Stokes 
correction to the dispersion relation would give (in the absence of the wake) 

(36) 

The corresponding correction to the linear dispersion relation is also shown in figure 
9 (using ( 5 )  with p2 = 0.5 to express af in terms of A*). 

The efect of the wake on the shock relation. This effect can be taken into account 
using an asymptotic theory (Cointe 1987) when it is assumed that both the steepness 
of the following waves and the thickness of the wake are small. 

This analysis yields for the value of the total resistance in the presence of the wake 

W 2  = K i  C2 = gKS(  1 + iU? K i ) .  

R, = R,-pgA@). (37) 
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6, = Ac3/qA 
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FIGURE 9. Effect of breaker wake on following wavelength: comparison of present theory us. 
experiments. 0, Duncan's (1981) experiments; -, linear following waves, y = 0.2; -, linear 
following waves, y = 0.5; . . . . . . , Stokes correction, y = 0. 

As a consequence, the presence of the wake induces a small reduction of the minimum 
resistance at which breaking can occur. Note that there is no effect, at this order, of the 
modulation of the thickness of the wake by the orbital velocity of the wave. This result 
confirms that it is the pressure - and not the shear stress - which is responsible for the 
suppression of the following waves. 

3.2.4. Finite-depth efSects 
All the preceding computations have also been carried out in finite depth. Actually, 

the deep-water shock relation was obtained (Cointe 1987) by considering the limit of 
the finite-depth result. For finite-amplitude waves, this limiting process is far from 
being obvious, and significant differences with Duncan's (1 982) analysis are shown. 
Results are found to be qualitatively very similar in intermediate depth and deep water. 
For small-amplitude waves, the shock relations are obtained by using in (21) the 
corresponding expression for the wave resistance in finite depth. For finite-amplitude 
waves, the numerical results of Cokelet (1977) can be used. 

The most interesting phenomenon which appears in finite depth is the creation of an 
horizontal current in the direction of wave propagation. This current is due to the wake 
and, therefore, is related to viscous (turbulent) phenomena accompanying breaking. It 
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FIGURE 10. The suppressive effect on the incoming wave (Q caused by a breaker (shaded) on wave 0, 
according to iterative numerical computations using linear theory and assuming a flat-topped 
breaker. Note that the crests 0 and @ have almost the same elevation. (a) gR,/pc4 = 0.018, y = 
0.2 (near incipient breaking). The vertical scale is exaggerated by a factor 9.75. (b) gR,/pc4 = 0.041, 
y = 0.40. The vertical scale is exaggerated by a factor 6.5. 

might be important in connection with sediment transport. The velocity of this current, 
cbr, is related to the height of the breaker, h* (for a depth much greater than c 2 / g )  by 

Ygh*2  
Cbr % ---, 

2 c  D 

where D is the water depth and c the celerity of the wave ( y  is in the range [0.2-0.51). 

3.2.5. Direct wave calculation 
The repressive effect of the breaker upon the advancing wave can also be calculated 

directly. Here, we take the point of view that this may be done within the framework 
of linear potential flow theory and we neglect the effect of the wake on the pseudoflow. 
As previously, in lieu of the hydrofoil wave system it is simpler to consider the more 
fundamental problem of a non-breaking advancing wave, height a,, for which breaking 
is somehow stimulated on a particular crest, resulting in its repression and a diminished 
following wave. The advancing wave may be thought of as generated by a source of 
resistance R, = hpga; (according to linear wave theory). 

This computation is performed here in order to illustrate how a direct wave 
calculation can be done. Of course, a similar calculation could be done numerically 
using higher-order or fully nonlinear wave theories and/or any disturbance as the 
source of resistance, but with much greater computational effort. 

The detailed computation using the assumptions described can be found in Cointe 
(1987). The main difficulty in this computation is that the pressure distribution to be 
applied at the free surface of the pseudoflow is not known a priori. For simplicity, the 
breaker was assumed to be flat-topped. The position of the leading edge of the breaker 
and the crest of the wave, as well as the height of the breaker, are found by iteration. 

The computed wave profiles for a solution near incipient breaking and for a stronger 
breaker are shown in figure 10 for the same values of y as in figure 7. In relation to the 
hydrofoil flow, the wave upstream of the breaker shown in figure 10 corresponds 
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closely to the wave which the hydrofoil would have produced in the absence of 
breaking; it cannot therefore be compared directly to the upstream wave in Duncan’s 
(1981, 1983) experiments. 

This direct numerical calculation also allows the total resistance to be related to the 
amplitude of the following waves; points corresponding to this calculation are shown 
in figure 7. The agreement between this direct counter-wave computation and the 
shock relation (23) is very good (for a given value of a, or R, and y, the local geometry 
of the flow would be different for different shapes of the breaker but not the amplitude 
of the following waves) and these computations validate the assumption made in the 
shock calculation that the elevation of the breaking and following crests are identical. 
Note that, even at incipient breaking, a fully formed breaker exists. 

4. Conclusions 
In this paper, we have derived a physical and mathematical model for steady spilling 

breakers. This model, based on Duncan’s (1981, 1983) observations, shows that a 
steady spilling breaker consists of an essentially stagnant eddy (the breaker itself) held 
in place on the forward face of the breaking wave by the turbulent shear stresses acting 
on the streamline which separates the breaker and the underlying flow. 

This model leads not only a description of the geometry of the breaker but also to 
estimations of its effect on the breaking and following waves. Its predictions are in 
excellent agreement with Duncan’s experiments, see figures 5, 7 and 9. The theory 
concludes that the existence of the broken wave arises from the fact that breaking 
allows the hydrofoil pressure resistance to be balanced by the breaker resistance plus 
that of the following wave, rather than by the following wave alone. This balance is 
only possible for a sufficiently large hydrofoil pressure resistance and this analysis thus 
explains the appearance of a threshold resistance (and therefore steepness) for steady 
breaking in the experiments. According to this result, breaking is therefore not a direct 
consequence of the existence of a Stokes’ wave of limiting steepness; this result also 
tends to explain the existence of a marginal stability zone where both breaking and 
non-breaking solutions can exist. 

For a resistance beyond the threshold but less than the maximum non-breaking wave 
resistance, two breaking regimes are, in general, found to exist : strong and weak. Only 
the strong regime is stable so that at threshold a fully formed strong breaker appears. 
For an even higher resistance, only the strong regime exists. The maximum steady 
breaking resistance is limited both by the size of the breaker, gh*/c2 = +, and by y, and 
therefore by the friction acting between the underlying flow and the breaker. 
Experiments do not exist where the hydrofoil resistance exceeds this limiting resistance, 
so we do not know how the flow would behave in this case. 

The breaker results in a wake. The displacement effect of this wake on the trailing 
wave results in a small increase in the wavenumber of that wave, in accord with 
experiments. 

In shallow water, the breaker is accompanied by a horizontal current in the direction 
of wave propagation, equation (38), which may be of importance in connection with 
sediment transport. 
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